viledon®

COST-EFFECTIVE AND ENERGY-EFFICIENT IN CONTINUOUS OPERATION

T60 POCKET FILTERS

FILTER	MERV	NOMINAL VOLUME	TEST	
TYPE	CLASS	FLOW RATE [cfm]	STANDARD	
T60	9	2,520	ASHRAE 52.2	

The application

T60 Compact pocket filter is used for supply, exhaust and recirculated-air filtration in ventilation systems with demanding requirements for durability and cost-efficiency, particularly

- supply air filtration for gas turbines and turbo-compressors on- and off-shore
- supply and exhaust air filtration for paint shops
- sophisticated air-conditioning systems (hospitals, laboratories, libraries, museums, airports, etc.)
- downstream "policing filters" in dust removal systems

Characteristics and benefits

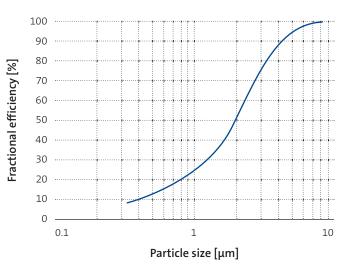
 The filter media is made of highperformance nonwovens, produced in-house from non-breaking, syntheticorganic fibers. This ensures superlative durability, high arrestance, low pressure drop, long useful lifetimes, and high cost-efficiency.

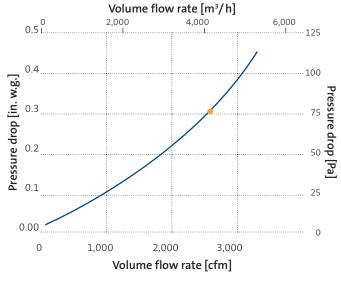
- T60 filters are highly energy-efficiency thereby reducing energy costs and CO₂ emissions.
- T60 Compact pocket filters are free of glass fibers, non-corroding, microbiologically inactive.
- High functional dependability thanks to the leakproof-welded configuration of the filter pockets, foam-sealed into a PUR front.
- The cost-efficient T60 pocket filters are indestructible and perform consistently in continuous operation.

The special features

 T60 pocket filters offer important preconditions for optimum efficiency and availability of turbomachinery: very low pressure drops, high dust holding capacity, and long useful lifetimes, in addition to exceptional sturdiness even when subjected to pump surges. They can be relied on to stop aggressive, abrasive particles, thus minimizing both fouling and erosion of the blades.

 These filters do an excellent job even under extreme weather conditions and in offshore intake air systems.


GEOMETRIES AVAILABLE		1/1	5/6	1/2	S 1 / 1
Front frame	in	$23^{3}/_{8} \times 23^{3}/_{8}$	$19^{3}/_{8} \times 23^{3}/_{8}$	$11^{3}/_{8} \times 23^{3}/_{8}$	$23^{3}/_{8} \times 23^{3}/_{8}$
Overall depth	in	26	26	26	20
Number of pockets		8	4	3	8
Effective filtering area	ft²	65	32.5	24.4	50
Weight approx.	lb	7.3	3.6	2.8	5.6
Thermal stability	°F	160	160	160	160
Suitable for standard mounting frame	in	24×24	20×24	12×24	24×24



TECHNICAL FILTER TEST DATA TO ASHRAE 52.2

Initial fractional collection efficiency plotted against particle size (ASHRAE 52.2)

Initial pressure drop curves

■ T 60

Nominal volume flow rate

KEY DATA		Т60
Filter class		MERV 9
Nominal volume flow rate	cfm	2,520
Initial pressure drop @ 1,968 cfm	in. w.g.	0.20
Initial pressure drop @ 2,520 cfm	in. w.g.	0.31
Final pressure drop*	in. w.g.	1.50
Bursting strength	in. w.g.	> 25

^{*} For cost-efficiency or system-specific reasons it may be appropriate to change the filters before reaching the final pressure drop stated. It can also be exceeded in certain applications.

Test report 16-1459

The figures given are mean values subject to tolerances due to normal production fluctuations. Our explicit written confirmation is always required for the correctness and applicability of the information involved in any particular case. Subject to technical alterations. You will find instructions on how to handle and dispose of loaded filters in our information on product safety and eco-compatibility.

